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Abstract— Recently, there has been much interest in accurate
determination of mobile user locations in cellular environments.
A general approach to this geolocation problem is to gather
time-of-arrival measurements from a number of base stations
(BSs) and to estimate user locations using the traditional least
square approach. However, in non-line-of-sight (NLOS) situa-
tions, measurements are significantly biased. Hence, very large
errors in location estimation may be introduced when traditional
techniques are adopted. For this reason, before employing an
algorithm for location estimation, it is useful to know which
BS’s are in line-of-sight (LOS) and which are in NLOS of the
mobile station. In this paper, a non-parametric approach to this
NLOS identification problem is proposed. Since the statistics of
NLOS errors are usually unknown, a non-parametric probability
density estimation technique is employed to approximate the
distribution of the measurements. Then, an appropriate metric
is used to determine the distance between the distribution of the
measurements and the distribution of the measurement noise.
Depending on the closeness of the distributions, the propagation
environment is classified as LOS or NLOS. In a situation where
reliability of measurements from a BS is to be quantified,
the distance can be used to represent the reliability of the
measurements as well as to classify the station.

I. INTRODUCTION

Recently, the subject of mobile positioning in wireless com-
munication systems has drawn considerable attention. With
accurate location estimation, a variety of new applications
and services such as Enhanced-911, location sensitive billing,
improved fraud detection, intelligent transport system (ITS)
and improved traffic management will become feasible [2].

Mobile positioning using radiolocation techniques usually
involves time of arrival (TOA), time difference of arrival
(TDOA), angle of arrival (AOA), or signal strength (SS)
measurements, or some combination of these methods. Mul-
tipath, non-line-of-sight (NLOS) propagation and multiple
access interference are often the main sources of errors in
geolocation, and make mobile positioning challenging. Among
these error sources, NLOS is perhaps the most crucial one.

In an NLOS situation, TOA measurements that are used to
estimate the distance between a mobile station (MS) and a base
station (BS) are severely biased. In this case, using traditional
location algorithms may result in large errors in location
estimation [1]. However, if it is known that the MS is in NLOS
with respect to a BS, then some special methods can be applied
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depending on the scenario. For example, if at least three
BS’s are in LOS of the MS, then the measurements from the
NLOS BS’s can be discarded in obtaining a two-dimensional
location estimate. Alternatively, when the Recursive Weighting
Algorithm [2] is employed to reduce NLOS propagation errors,
knowledge of LOS/NLOS BS’s becomes important. In other
words, identification of NLOS BS’s can help considerably to
improve the location estimation.

The problem of NLOS identification is essentially a detec-
tion problem. It compares the LOS hypothesis to the NLOS
hypothesis. The probability distribution of the measurements
under the LOS hypothesis is usually known except for its
mean. If the distribution under NLOS hypothesis is also
assumed to be known, then the problem can be solved by
the conventional hypothesis testing method [3]. However,
the probability distribution of NLOS errors, hence that of
the measurements under the NLOS hypothesis, is usually
unknown. Therefore, a technique which does not assume the
knowledge of NLOS error statistics should be developed.

In this paper, a non-parametric NLOS identification tech-
nique is proposed. Since the statistics of TOA delays due
to NLOS are not known exactly, a non-parametric approach
is adopted to approximate the probability density function
of the measurements. Then, a suitable distance metric be-
tween a known measurement error distribution and a non-
parametrically estimated distance measurement distribution is
defined to determine whether a given BS is within LOS or
NLOS of the MS. The distance between these two distributions
can also be used as a reliability measure for the measurements
from the given BS.

The remainder of the paper is organized as follows. Sec-
tion II formulates the problem of NLOS identification and
describes the non-parametric NLOS identification algorithm.
The performance of the algorithm is evaluated in Section III
by simulation studies. Finally, some concluding remarks are
made in Section IV.

II. NON-PARAMETRIC NLOS IDENTIFICATION

Consider a situation in which m independent identically
distributed (iid) range measurements (obtained from TOA
measurements multiplied by the speed of light) between an
MS and a BS are taken. Assume that the change in the location
of the MS during these measurements can be ignored. Hence
the distance between the MS and the BS can be considered
approximately constant for the geolocation purpose. Then, for
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the ith measurement, the hypotheses can be expressed as:

H0 : ri = d + ni

H1 : ri = d + ni + ei, (1)

for i = 1, ...,m, where H0 is the LOS hypothesis and H1 is
the NLOS hypothesis. In the former case, the measurement
is modelled as the summation of the true distance d and a
measurement noise, ni, while in the latter case, the NLOS
error ei is also present, which is modelled by a positive random
variable.

We assume that the measurement noise statistics are com-
pletely known and is modelled by a zero mean Gaussian ran-
dom variable. However, neither d nor the probability density
function of the NLOS error are known. Therefore, it is not
possible to invoke conventional hypothesis testing techniques
like generalized likelihood ratios.

Let the probability density function (pdf) of the measure-
ment noise be pn(x), which is completely known. Then, the
pdf of the measurements in the LOS hypothesis case is given
by pn(x− d). Note that this distribution is completely known
except for one parameter, d, which affects only the mean of
the distribution. The main idea in the non-parametric NLOS
identification test is to compare the closeness of this pdf to
the pdf of range measurements. Thus we first approximate the
pdf of the range measurements non-parametrically, compare
the closeness of this pdf to the LOS pdf by defining a distance
metric, and then decide LOS/NLOS after a threshold test. This
test can be summarized as follows:
1) Estimate the pdf of the distance from m iid range measure-
ments. Let this estimate be denoted by p̂r(x).
2) Calculate the distance between pn(x− d) and p̂r(x) for all
possible d values and find the minimum distance.
3) Compare this minimum distance to a threshold: Decide H0

if the minimum distance is smaller than the threshold, and
decide H1 otherwise.

We will discuss these steps in more details in the following
subsections.

A. Parzen Window Density Estimation

In order to estimate the pdf of the distance, a non-parametric
density estimation technique, called Parzen window density
estimation, is employed, which approximates the pdf using
some window functions around the samples. The reason for
employing this technique is its flexibility in choosing density
estimation parameters depending on the sample size.

Given iid distance measurements r1, ..., rm, the distance pdf
can be estimated by the following formula [4]

p̂r(x) =
1
m

m∑
i=1

1
hm

φ(
x − ri

hm
), (2)

where φ(.) is the window function and hm is a scaling
parameter. The window function must be a probability density
function in order for p̂r(x) to be a valid pdf. In other words, it
is always non-negative and integrates to one. Commonly used
window functions include Gaussian and rectangular windows

[4].

B. Distance Function

After obtaining the approximate pdf of the distance, our next
step is to determine whether these distance measurements are
coming from pn(x−d) or the pdf under the NLOS hypothesis.
Since the pdf under the NLOS hypothesis is unknown, it is
reasonable to compare the distance between pn(x − d) and
p̂r(x) and accept the LOS hypothesis if the distance is smaller
than a threshold, that is, if the two distributions are sufficiently
close. Since the true distance, d, is unknown, the minimum
distance between pn(x − d) and p̂r(x) must be calculated
among all possible d’s.

The Kullback-Leibler (KL) distance [5] can be used to
calculate the distance between two probability distributions.
For given pdf’s p1 and p2, the KL distance between them is
given by

D(p1‖p2) =
∫

p1(x) log
p1(x)
p2(x)

dx. (3)

C. Decision Criterion

The decision criterion to determine LOS or NLOS hypoth-
esis becomes the following test:

inf
d

{D(p̂r(x)‖pn(x − d))}
H0

�
H1

δ, (4)

where δ is the threshold.
If the value of the d minimizing the decision variable can

be found, the test can be expressed simply as

D(p̂r(x)‖pn(x − d̂))
H0

�
H1

δ. (5)

We assume that the measurement noise is a zero mean
Gaussian random variable, which is a valid approximation
when the TOA’s are acquired with a matched filter approach
at high signal-to-noise ratio (SNR) [6]. Then, pn(x − d) is
expressed as

pn(x − d) =
1√
2πσ

e−(x−d)2/(2σ2). (6)

In this case, the following result indicates the simplification
of the decision test.

Proposition 2.1 For a zero mean Gaussian measurement
error and a symmetric window function, i.e., φ(x) = φ(−x)
for all x, the value of d minimizing the distance function of
(4) is the sample mean of the measurements, that is, d̂ =
1
m

∑m
i=1 ri.

Proof See Appendix A.
Proposition 2.1 states that for a symmetric window function,

the minimum distance to be used in the decision criterion can
be computed by simply shifting the Gaussian measurement
error pdf by the sample mean of the measurements and
calculating the KL distance between this shifted pdf and the
estimated pdf, p̂r(x).
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Another important issue is the appropriate choice of the
threshold value, δ. Since the pdf’s are not known exactly
under either hypothesis, it does not seem possible to set the
“false alarm” (i.e. misinterpret a LOS situation as NLOS) and
“miss detection” (i.e. misinterpret an NLOS situation as LOS)
probabilities. However, the following result states that in some
situations the false alarm probability can be set even though the
true distance d is not known, that is, without any information
about the mean of the random variable under H0.

Proposition 2.2 For a zero mean Gaussian measurement
error and a symmetric window function, the false alarm
probability can be set independently of the true distance
between the mobile and the base station.

Proof See Appendix B
Proposition 2.2 states that under suitable conditions the

distance function is independent of the true distance under
the LOS hypothesis and it is therefore theoretically possible
to set the false alarm rate.

Under the conditions stated in the above two propositions,
the decision test can be expressed as follows (Appendix C):∫

p̂r(x) log(
√

2πσp̂r(x))dx +
σ̂2

2σ2

H0

�
H1

δ
′
, (7)

where σ̂2 is the sample variance2 of the range measurements,
that is σ̂2 = 1

m

∑m
i=1(ri − d̂)2.

Depending on the technique to locate the mobile user, the
classification of BS’s may not be necessary. Instead some
reliability information about the measurements from each BS
might be required. In this case, the distance value between the
LOS and NLOS pdf’s can be used as a reliability information,
which can help us to locate the mobile more accurately.

III. SIMULATION RESULTS

In this section, the performance of the non-parametric
NLOS BS identification technique is evaluated.

Figure 1 shows the false alarm probability, PFA, of the
non-parametric technique for different numbers of measure-
ments (m = 3, 5, 10, 15) when the miss detection probability,
PMD, is set to 0.05. The measurement noise is modelled by
N (0, 100m2) and the NLOS error is modelled by an expo-
nential random variable with mean 25m. The unit variance
Gaussian window is used and the scaling parameter hm is
set to 20. In this scenario, we see that we do not need many
samples to have a reliable decision.

In order to evaluate the performance of the technique for
different NLOS errors, we plot the false alarm probability for
different NLOS errors. Specifically, we change the mean of the
exponential random variable representing the NLOS error and
plot PFA when PMD = 0.10 and the number of samples m is
10. The Gaussian measurement noise and the parameters of the
Parzen window density estimation technique are kept the same
as in the previous case. Figure 2 shows the performance of the

2The sample variance is often defined as s2 = 1
m−1

∑m
i=1(ri − r̄)2,

where r̄ is the sample mean. This definition makes s2 an unbiased estimate
of the population variance.
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Fig. 1. False alarm probability versus the number of measurements when
PMD = 0.05.
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Fig. 2. False alarm probability versus NLOS errors when PMD = 0.10 and
m = 10.

technique for different NLOS noise levels. Obviously, the test
becomes more successful as the mean (hence the variance)
of the exponential random variable increases since it becomes
easier to distinguish between the two hypotheses.

IV. CONCLUSION

A non-parametric test to determine whether a given BS is
in LOS or NLOS of the MS in question has been proposed.
A suitable distance metric between a known measurement
error distribution and a non-parametrically estimated distance
distribution has been defined to determine whether a given
BS is within LOS or NLOS of the MS. The performance of
the algorithm has been evaluated by simulation experiments.
Future work includes more detailed simulation studies under
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different NLOS scenarios and comparisons to other techniques
[3].
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APPENDIX

A. Proof of Proposition 2.1

Using (3), the KL distance between p̂r(x) and pn(x − d)
can be expressed as

D(p̂r(x)‖pn(x − d)) =
∫

p̂r(x) log
p̂r(x)

pn(x − d)
dx. (8)

After inserting (6) and some manipulations, we get

D(p̂r(x)‖pn(x − d)) =
∫

p̂r(x) log(
√

2πσ p̂r(x)) dx

+
1

2σ2

∫
(x − d)2p̂r(x) dx. (9)

When we differentiate (9) with respect to d and equate to
zero, we get

d̂ =
∫

x p̂r(x) dx∫
p̂r(x) dx

. (10)

Since p̂r(x) is a probability density function, the denom-
inator is equal to unity. For the numerator, if we consider a
symmetric window function,∫

x p̂r(x) dx =
1

mhm

m∑
i=1

∫
xφ

(
x − ri

hm

)
dx

=
1
m

m∑
i=1

ri (11)

where we use the fact that window functions integrate to unity.
So the optimal value of d is the sample mean of the

measurements,

d̂ =
1
m

m∑
i=1

ri, (12)

which minimizes (8).

B. Proof of Proposition 2.2

The false alarm probability is the probability that the KL
distance between p̂r(x) and pn(x − d) exceeds the threshold
given that H0 is the true hypothesis. That is,

PFA = Pr{D(p̂r(x)‖pn(x − d̂)) > δ | H0}. (13)

Under H0, each measurement is equal to sum of the
true distance and measurement noise, which is a zero mean
Gaussian random variable. In other words, ri = d + ni for
i = 1, ...,m. From Proposition 2.1, the optimal value of d
minimizing the KL distance of (4) is given by d̂ = 1

m

∑m
i=1 ri.

Inserting (2) and (6) in (5), we get

D(p̂r(x)‖pn(x − d̂)) =

1

mhm

m∑
i=1

∫
φ(

x − ri

hm
) log

(
1

mhm

m∑
i=1

φ(
x − ri

hm
)

)
dx −

1

mhm

m∑
i=1

∫
φ(

x − ri

hm
) log

(
1√
2πσ

e−(x−d̂)/(2σ2))

)
dx.(14)

Note that x − d̂ = x − 1
m

∑m
i=1 ri = x − d − 1

m

∑m
i=1 ni,

since ri = d+ni under H0. So defining a new dummy variable
for the integrals as u = x − d, we obtain

D(p̂r(x)‖pn(x − d̂)) =

1

mhm

m∑
i=1

∫
φ(

u − ni

hm
) log

(
1

mhm

m∑
i=1

φ(
u − ni

hm
)

)
du −

1

mhm

m∑
i=1

∫
φ(

u − ni

hm
) log

(
1√
2πσ

e−(u− 1
m

∑m
i=1 ni)/(2σ2))

)
du,

which solely depends on n1, ..., nm. Therefore, it is possible
to set the false alarm rate without any information about the
true distance, d.

C. Derivation of Equation (7)

The decision test in the Gaussian measurement noise case
can be expressed as

D(p̂r(x)‖pn(x − d̂))
H0

�
H1

δ, (15)

where d̂ = 1
m

∑m
i=1 ri.

Similar to (9), the distance can be expressed as

D(p̂r(x)‖pn(x − d̂)) =
∫

p̂r(x) log(
√

2πσ p̂r(x)) dx

+
1

2σ2

∫
(x − d̂)2p̂r(x) dx. (16)

The integral in the second term can be expressed as follows:∫
(x−d̂)2p̂r(x) dx =

1
mhm

m∑
i=1

∫
(x2−2d̂x+d̂2)φ(

x − ri

hm
)dx,

(17)
which can be shown equal to∫

(x−d̂)2p̂r(x) dx =
1

mhm

m∑
i=1

{hm[h2
mσ2

w+r2
i ]−2d̂rihm+d̂2hm},

(18)
where σ2

w =
∫

x2φ(x)dx. After combining the terms we get∫
(x − d̂)2p̂r(x) dx = h2

mσ2
w + σ̂2, (19)
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where σ̂2 = 1
m

∑m
i=1(ri − d̂)2 is the sample variance of the

measurements. Inserting (19) in (16), the final decision test
can be expressed as in (7) where δ

′
= δ − h2

mσ2
w/(2σ2).
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