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Abstract— Non-line-of-sight (NLOS) geolocation becomes an
important issue with the fast development of mobile communica-
tions in recent years. Several methods have been proposed to ad-
dress this problem. However, a comprehensive study on the best
geolocation accuracy that these methods may possibly achieve is
called for. In [1], [2], we reported a unified analysis of the Cramer-
Rao Lower Bound (CRLB) and achievable bounds applicable to
NLOS geolocation, assuming no prior information on the mobile
station (MS) position or NLOS induced paths is available. In prac-
tice, however, we often have some information about these param-
eters beforehand. In this paper, we derive a lower bound for the
geolocation accuracy in the presence of such prior information,
and explore its physical interpretation. Some numerical examples
are discussed.

I. INTRODUCTION

Geolocation in non-line-of-sight (NLOS) environment is an
important topic in wireless communications. Several methods
[3]–[7] have been proposed to mitigate NLOS effects in geolo-
cation. However, there has been no systematic study reported
regarding the best geolocation accuracy that these methods may
possibly achieve, which should be of practical and theoretical
interest. A complete analysis of NLOS geolocation with mul-
tipaths would be very complicated. To make the problem man-
ageable, our current study focuses on a scenario in which a sin-
gle (line-of-sight (LOS) or NLOS) propagation path exists for
each base station (BS) and mobile station (MS) pair. In [1], we
presented a unified treatment to obtain the Cramer-Rao Lower
Bound (CRLB) for various NLOS geolocation approaches. Our
further study showed, however, that the CRLB is not achievable
in general. The achievable bound is then investigated in [2].
One interesting and common characteristic for the two bounds
is that contribution of NLOS signals ought to be completely ig-
nored, i.e., the bound for NLOS geolocation is equivalent to the
one applicable to a situation in which only signals from LOS
stations are processed. This results from the assumption that no
prior statistics for the MS position or NLOS delays is available.

In practice, however, it is possible to acquire some statistical
characteristics on delays of NLOS signals or an MS position
beforehand. With such information, better positioning accuracy
is reasonably expected. In this paper, we extend our previous
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study by incorporating the prior information to a lower bound
for NLOS geolocation accuracy. To emphasize major points,
we begin with a simple (albeit somewhat unrealistic) scenario
that NLOS delays are independent Gaussian random variables.
We then model the delays to be Gamma distributed, which is
more realistic than Gaussian since a NLOS delay is always rep-
resented by a non-negative number. The situation with prior
knowledge on the MS location is then addressed.

The rest of the paper is structured as follows. We present the
problem formulation in Section II. In Section III, we consider
the lower bound for geolocation accuracy with prior informa-
tion for NLOS delays. Its physical significance is addressed.
We then discuss, in Section IV, the issue with prior informa-
tion for the MS position. Section V provides some numerical
examples. We make a brief conclusion in the last section.

II. PROBLEM FORMULATION

Let B = {1, 2, · · · , B} be the set of indices of B base
stations, whose locations are at

{
pb = (xb, yb), b ∈ B}

. De-
note the set of the BS’s that receive NLOS signals as M =
{k1, k2, · · · , kM}. We can assume M = {1, 2, · · · ,M} with-
out loss of generality. The complement L = B \M is the set
of LOS stations, with its cardinality being |L| = B −M . The
parameter of our interest is the MS position p = (x, y), yet
there are M additional unknown parameters, NLOS propaga-
tion induced path lengths, l = (l1, l2, · · · , lM ). Thus, we define
an (M + 2)-dimensional vector θ = (p, l). The a priori joint
probability density of θ is pθ(θ). Let τb be the time delay of the
signal at base station b (BSb), specifically to be,

τb =
1
c

{√
(xb − x)2 + (yb − y)2 + lb

}
, (1)

where lb = 0 if b ∈ L, c = 3 × 108 m/s is the speed of light.
The received signal at BSb is

rb(t) = Abs(t− τb) + nb(t), for b ∈ B, (2)

where Ab is the signal amplitude for BSb, s(t) is the base-band
waveform, and nb(t)’s are independent complex-valued white
Gaussian noise processes with spectral density N0/2.
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The joint probability density function of observables
{rb(t), b ∈ B} conditioned on θ is

fθ(r) ∝
B∏

b=1

exp
{
− 1
N0

∫
|rb(t) −Abs(t− τb)|2 dt

}
. (3)

By casting the NLOS geolocation as a multi-parameter estima-
tion problem, we wish to obtain a lower bound on the mean-
square error in estimating the MS position p. Denote the infor-
mation matrix by J, which is the Bayesian version [8] of the
Fisher information matrix. The matrix J consists of two parts,

J = JD + JP , (4)

where the subscripts “D” and “P” denote the information due to
the data r and the prior knowledge pθ(θ), respectively.

JD = E

[
∂

∂θ
log fθ(r) ·

(
∂

∂θ
log fθ(r)

)T
]
, (5)

where ∂
∂θ log fθ is an (M + 2) column vector, symbol “T” des-

ignates transpose, and the expectation is taken over r and θ.

(JP )ij ≡ −E
(

∂2

∂θi∂θj
ln pθ(θ)

)
, for 1 ≤ i, j ≤ (M + 2),

(6)
where the expectation is over θ.

The relation between the covariance matrix of θ, Cov(θ), and
J is

Cov(θ) ≥ J−1, (7)

where the inequality means that the matrix (Cov(θ) − J−1) is
non-negative definite. Note that this provides a lower bound on
the mean-square errors, specifically to be

E(θ̂i − θi)2 ≥ (J−1)ii, for 1 ≤ i ≤ (M + 2). (8)

The quantities with i = 1, 2 are for the MS position. Compared
with the CRLB which is conditioned on specific values of the
parameters to be estimated, the Bayesian bound (J−1) utilizes
the a priori probability density of the parameters and provides a
“global bound” that does not depend on the values on a specific
trial.

III. LOWER BOUND WITH PRIOR INFORMATION ON NLOS
PROPAGATION

We first look into a simple scenario that the NLOS delays, l,
are known to be independently Gaussian distributed. As we will
see soon, it leads naturally to the major point of how the prior
information may enhance geolocation precision. The derivation
is then generalized to some realistic distribution, e.g. Gamma
distribution, since the NLOS delays are non-negative in prac-
tice. A lower bound with the statistics of the MS position is
complicate and left to the next section.

A. NLOS delays of Gaussian distribution

We divide the parameter vector θ into a nonrandom and ran-
dom components: the MS position p and the NLOS delays l,
respectively. The parameters in l have independent Gaussian
distribution with mean ul and a covariance matrix Σl

Σl =




σ2
l1

0
. . .

0 σ2
lM


 . (9)

The expectation in Eqs. (5) and (6) for JD and JP now is
taken over r and l, and l, respectively [8]. It is straightforward
to obtain

JP =
(

0 0
0 Σ−1

l

)
. (10)

To evaluate JD, we rewrite Eq. (5) as

JD = E
(
Jθ

)
, (11)

where the expectation is on l only. The matrix Jθ is the Fisher
information matrix conditioned on θ, i.e.,

Jθ = Eθ

[
∂

∂θ
log fθ(r) ·

(
∂

∂θ
log fθ(r)

)T
]
, (12)

where the expectation is over observables r conditioned on θ.
We have shown in [1] that

Jθ = H · Jτ · HT , (13)

where

H =




∂τ1
∂x · · · ∂τM

∂x · · · ∂τB

∂x
∂τ1
∂y · · · ∂τM

∂y · · · ∂τB

∂y
∂τ1
∂l1

· · · ∂τM

∂l1
· · · ∂τB

∂l1
...

. . .
...

. . .
...

∂τ1
∂lM

· · · ∂τM

∂lM
· · · ∂τB

∂lM



, (14)

an (M +2)×B matrix, and Jτ is the Fisher information matrix
conditioned on τ ,

Jτ = Eτ

[
∂

∂τ
log fτ (r) ·

(
∂

∂τ
log fτ (r)

)T
]
. (15)

The matrix H contains the geometric relation among the MS
and BS’s. It can be decomposed into a NLOS and LOS compo-
nents

H =
1
c
·
(

HNL HL

IM 0

)
, (16)

where IM is an identity matrix of order M , HNL and HL are
2 ×M and 2 × (B −M) matrices, respectively, given by

HNL =
(

cosφ1 · · · cosφM

sinφ1 · · · sinφM

)
, and

HL =
(

cosφM+1 · · · cosφB

sinφM+1 · · · sinφB

)
,
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and angle φb is determined by

φb = tan−1 y − yb

x− xb
.

The subscripts “NL” and “L” denote the quantities for NLOS
and LOS stations, respectively. Similarly,

Jτ =
(

ΛNL 0
0 ΛL

)
, (17)

where ΛNL and ΛL are diagonal matrices of orderM and (B−
M), respectively, as

ΛNL =




λ1 0
. . .

0 λM


 , and

ΛL =




λM+1 0
. . .

0 λB


 .

Their entries are

λb = 8π2β2 ·Rb, for b ∈ B, (18)

where Rb is the signal-to-noise ratio (SNR) of the received sig-
nal at BSb, i.e.,

Rb =
∫ |Abs(t)|2dt

N0
,

and the effective bandwidth of the signal waveform,β, is deter-
mined by

β2 =
∫

f2|S(f)|2df.
S(f) is the Fourier transform of s(t).

Note that matrices H and Jτ in Eqs. (16) and (17) are inde-
pendent of l. We can remove the expectation sign in Eq. (11),
i.e.,

JD = Jθ. (19)

With Eqs. (13), (16) and (17), Eq. (19) becomes

JD =
1
c2

·
(

HNLΛNLHT
NL + HLΛLHT

L HNLΛNL

ΛNLHT
NL ΛNL

)
.

(20)
Up to now we have evaluated both ingredients for the matrix

J in Eq. (4). Denote the Bayesian bound as

L ≡ J−1 = (JD + JP )−1
. (21)

Since the MS position accuracy is of our major concern, we
only consider L2×2, which is the first 2 × 2 diagonal matrix of
L. The explicit expression of L2×2 is complex (see Appendix).
We choose to obtain its lower and upper bounds instead, for a
clear physical interpretation. We derive in Appendix that

c2
(
HNLΛNLHT

NL + HLΛLHT
L

)−1 ≤ L2×2 ≤ c2
(
HLΛLHT

L

)−1
.

(22)
The lower bound is attained when σ2

lm
−→ 0, for 1 ≤ m ≤ M ,

i.e., we know the exact NLOS path length, in which NLOS
stations are treated as LOS ones. On the other hand, the up-
per bound is achieved when all σ2

lm
−→ +∞, which means

we have no such prior information. We may notice the upper
bound relies only on the LOS signals, which is reduced to the
CRLB [2].

B. NLOS delays of Gamma distribution

As we know that the NLOS induced path length is always
positive, it is more reasonable to model l to be independently
Gamma distributed, i.e.,

G(αm, qm) =
αqm

m

Γ(qm)
exp(−αm · lm) · lqm−1

m , for m ∈ M,

(23)
where qm > 2 and αm > 0. The balance between qm and αm

controls the decay and spread pattern of the probability density
function.

Substitute Eq. (23) into Eq. (6), we obtain

JP =
(

0 0
0 Π−1

l

)
, (24)

where

Π−1
l =




α2
1

q1−2 0
α2

2
q2−2

. . .

0 α2
M

qM−2


 . (25)

Compare Eqs. (25) and (10), we realize that, for fixed αm,
qm −→ 2 is equivalent to σlm −→ 0, and qm −→ +∞ is
equivalent to σlm −→ +∞ in Eq. (9). Therefore, an almost
identical conclusion as Gaussian case applies for Gamma dis-
tribution. Specifically, Eq. (22) still holds. For fixed αm, the
lower bound is attained when qm −→ 2, for 1 ≤ m ≤ M . The
upper bound is achieved when all qm −→ +∞.

It is clear that a similar derivation can be extended to any
other distributions for NLOS delays.

IV. LOWER BOUNDS WITH PRIOR INFORMATION ON THE

MS POSITION

Suppose that we also have some prior statistics on the MS po-
sition. For an example, p are independent Gaussian distributed
with mean up and a covariance matrix

Σp =
(

σ2
x 0
0 σ2

y

)
. (26)

It is difficult to acquire an analytical result of the expectation
over p in Eq. (6). Thus we only make a rough approximation:
if the diagonal terms of the lower bound in Eq. (22) is larger
than that of Σp, we set L2×2 = Σp; if the diagonal terms of the
upper bound is smaller than that of Σp, the extra MS informa-
tion is ignored.

V. NUMERICAL EXAMPLES

We provide some numerical examples in this section. We
simulate a cellular CDMA system, as shown in Figure 1, with
the cell radius of 1000m. The bandwidth of CDMA signals
is W = 5Mcps. The relation between W and the effective
bandwidth β is derived as

β =
W√

3
. (27)
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Fig. 1. A Cellular system with seven base stations. The cell radius is 1000m.

The SNR is set to be 3dB when the distance between the MS
and BS is 2000m.

The Figure 2 shows the Bayesian bounds for the NLOS ge-
olocation varies with NLOS induced delays, together with its
lower and upper bound. No prior information on the MS posi-
tion is assumed here. The BS1 and BS2 are NLOS BS’s, while
the other five stations receive LOS signals. The propagation
loss factor is 2 for LOS (free space) and 4 for NLOS paths. As
we may notice from the figure, the lower and upper bound be-
comes close when NLOS delays is larger. The reason is that
the NLOS signals become weaker and contain “less informa-
tion”. The other trend is that when the variance of the NLOS
delays is smaller, i.e., we have more accurate knowledge on l,
the Bayesian bound converges to the lower bound.
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Fig. 2. MS positioning accuracy vs. NLOS induced path length. MS is
located at (500m,700m). Propagation loss factor is 2 for LOS (free space) and
4 for NLOS path. BS1 and BS2 are NLOS BS’s, while others are LOS stations.

VI. CONCLUSIONS

In this paper, we presented a lower bound for NLOS geolo-
cation accuracy with prior information on NLOS delays and the
MS position. Its physical interpretation has been explored. The
lower bound provides an effective criterion to evaluate perfor-
mance of various geolocation algorithms.

Appendix: Derivation of Eq. (22)

Rewrite L in Eq. (21) explicitly as

L =
(

1
c2 HNLΛNLHT

NL + 1
c2 HLΛLHT

L
1
c2 HNLΛNL

1
c2 ΛNLHT

NL
1
c2 ΛNL + Σ−1

l

)−1

=
(

A B
BT C

)−1

, (28)

where matrices A, B and C are defined as in the above equation.
It takes some calculation to obtain

L =
(

A−1 + FW−1FT −FW−1

−W−1FT W−1

)
, (29)

where
W = C − BT A−1B, F = A−1B, (30)

and the inverses that occur in the expressions exist [9]. Thus,

L2×2 = A−1 + FW−1FT

= c2
(
HNLΛNLHT

NL + HLΛLHT
L

)−1

+FT

(
1
c2

ΛNL + Σ−1
l − BT A−1B

)−1

F,(31)

We have shown in [2] that the matrix 1
c2 ΛNL − BT A−1B is

positive definite. With Σ−1
l ≥ 0, it is not difficult to verify

c2
(
HNLΛNLHT

NL + HLΛLHT
L

)−1 ≤ L2×2

≤ c2
(
HNLΛNLHT

NL + HLΛLHT
L

)−1

+FT

(
1
c2

ΛNL − BT A−1B
)−1

F

= c2
(
HLΛLHT

L

)−1
, (32)

where the last equality was proved in [2].
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