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Abstract: In a wireless communications network, the movement of mobile users presents
a scenario of access to the Internet that is substantially different from the wired
network. Requests for content issued by a mobile user depend on its mobile
state (e.g., location, velocity and direction). We employ a semi-Markov process
representation to construct a model that characterizes mobile user behavior in a
general state-space. The states of a mobile user can then be estimated and
tracked by using an algorithm for parameter estimation of a general Hidden
Semi-Markov Model (HSMM). Dynamic behavior of the aggregate request
rate can also be characterized. Finally, we show how the tracking model and
the request model can be applied to prefetch Web content for each mobile user
for efficient wireless Internet access.
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1. INTRODUCTION

In a wireless communications network, the movement of mobile users
presents a scenario of access to the Internet that is substantially different
from the wired network. For an individual mobile user, the point of contact to
the wired network changes with time. It is therefore imperative to be able to
track dynamic mobile behavior and to take into account the request traffic
when providing content to the mobile users.

The construction of mobility patterns for analysis and simulation has
attracted considerable attention in recent years [1]-[3]. In [1], a cellular-based
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location tracking system is developed that utilizes the estimated distance
between the mobile and the referenced base station. In [3] mobile behavior is
modeled as a random walk or Brownian motion on two-dimensional or three-
dimensional grids. A stochastic model for mobility called Markovian
highway Poisson arrival location model is proposed in [4].

In [5], a new mobility tracking model is introduced that characterizes
mobile user behavior in a general state-space using a semi-Markov process
representation. This model differs from the earlier work in that it allows us to
exploit recent results in queuing and loss network theory [6] and to
characterize the macroscopic mobility and traffic behavior in the wireless
network. The mobility tracking can be implemented in real-time using a
computationally efficient parameter estimation algorithm that has been
proposed recently [7]. The mobility model is augmented in [8] by
introducing a new request model that characterizes mobile user behavior of
access to the Internet. Based on information extracted from this model, a
resource allocation and an admission control scheme for wireless networks is
proposed in [9].

In the present paper, we propose a predictive prefetching scheme for each
individual mobile user, based on the estimation of the mobile user state. Our
objective is to reduce the average latency that a mobile user experiences in
accessing the wireless Internet. The remainder of the paper is organized as
follows. Sections 2 and 3 present the mobility model and mobility tracking
model, respectively. Section 4 discusses the characterization of web content
traffic generated from mobile user requests to access the wireless Internet.
Section 5 discusses the application of the mobility and request model to
prefetching of Web content at proxy servers. Simulation results illustrating
this approach to efficient wireless Internet access are presented in Section 6.
Finally, Section 7 concludes the paper.

2. MOBILITY MODEL

Following [5][8][9], we define the state of a mobile user in terms of a
vector (Xg, ..., Xp), wWhere the i th component, x;, represents a value from a
finite attribute space A;. The attribute spaces represent properties of the
mobile user such as location, moving direction, speed, etc. The set of
possible states for a mobile user is an n -dimensional vector space given by

S=A; X XA, Q)

where x denotes the Cartesian product. The abstract space S can be made as
rich as desired by including the appropriate attributes as components in the
state vector. The dynamic motion of a user, as defined by its time-varying
attribute values, can then be described by its trajectory in this space.
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We enumerate all possible states in S and label them as 1, ..., M such that
the state space S can more simply be represented as follows:

s={1,..,M} @)

We introduce two inactive states in addition to the set of active states S: the
source state 0 and the destination state d. A user enters the system by
assuming the state 0. A user exits the system by assuming the state d. Thus,
the user can assume states in the augmented state-space S'=S u {0, d}.

No transitions occur from states j € S to the source state, i.e., ajp = 0.
From any such state j, the user next assumes the destination state d with
probability ajq. No transitions are allowed from the destination state. Hence,
the state d is considered to be the absorbing state of the Markov chain.
Further, no transitions occur from state O to state d, i.e., agg = 0. The state
transitions of a user are characterized by a Markov chain with transition
probability matrix:

d 1 0 0 0 0
0 0 a01 aoz ao,M
A=1l3y 0 a, a, Y 3)
azd 0 a21 azz a2 M
Mlayy O ay, ay, - ayu |

In practical applications transitions among the states are limited due to
physical constraints (e.g., the street layout). We assume that from a given
state, transitions can occur to on the order of ten neighboring states, such that
the transition probability matrix is highly sparse.

We assume the dwell time of a user in state m € S to be generally
distributed with mean d,. Hence, the state process of a user is a semi-Markov
chain. The transition probability matrix and the state duration distributions
can be estimated by means of a parameter estimation algorithm discussed in
[71[10].

The aggregate behavior of the system of mobile users can be represented
by the vector process

N(t) = ( Nl(t)’ e NM(t) )i (4)

where Np(t) represents the number of mobile users in state m at time t. We
observe that the above system is equivalent to an open queuing network with
M infinite-server stations corresponding to the states in S. Clearly, the source
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and destination stations of the queuing network correspond to 0 and d,
respectively. Results from the theory of queuing and loss networks [6] show
that the steady-state distribution of N(t) is insensitive to the distributions of
the dwell times at each station.

From

€, =8, + .83, me s, (5)

nes

we get the value en,, which can be interpreted as the average number of visits
that a user makes to state m during its sojourn in the system starting from the
source state O until reaching the destination state d. Let N, denote the
expected number of users in state m in equilibrium (m=1, ..., M). The mean
departure rate from state m is given by

Am= Np/dm = Ao Em, m=1, 2, ..., M, 6)

where A is the total rate at which mobile users transit from the inactive state
0 to an active state, i.e., the total rate of entry to the system, and d,, is the
mean dwell time in state m.

3. MOBILITY TRACKING MODEL

The general mobility model was discussed in the context of a continuous-
time parameter t. In practice, tracking of the system parameters must be
based on measured observations sampled at discrete time instances.
Therefore, we shall represent the user dynamics by a discrete-time semi-
Markov chain, where the parameter t is now discrete, taking values in {0, 1,
2, ... }. Furthermore, the system states cannot, in general, be observed
directly, i.e., the states are hidden. Hence, an appropriate model for the
system is a discrete-time Hidden Semi-Markov Model (HSMM).

As in the continuous-time model, the evolution of the user state in the
active state-space S is characterized by a state transition probability matrix
denoted by A = [a;: i,j € S ]. We shall assume that the mobile user dwell
time in a given state is a random variable taking values in the set {1, ..., D},
with probability distribution function denoted by pn(d), d=1,..., D. We
introduce the MxD matrix

P=[pmd):meS,d=1,..,D] @)
In order to track user mobility, the parameters of the semi-Markov model

must be estimated based on observations of the user state. This leads to a
Hidden Semi-Markov Model (HSMM) described as follows. Let s, {1, ...,



Mobility Tracking and Traffic Characterization for Efficient 5
Wireless Internet Access

M} denote the state of the user at time t, t = 0, 1, 2, ... . Let us denote the
initial state probability distribution vector by

= (am:m=1,..,M), (8)

where agnm is the probability that the initial state of the user is state m.

Let o; denote the value of an observation of the user state at time t. We
assume that there are K distinct state observation values, 1, ..., K. Note that
the observation value oy is generally different from the true state s;, due to
geolocation and estimation errors. We define the following observation
probability distribution matrix:

B = [bu(k): meS, k=1, ..., K], ©)

where bn(k) denotes the probability that the observed value at an arbitrary
time t is o, = k, given that the actual user state is s, = m. The 4-tuple (A, B, P,
m) provides a complete specification of the discrete-time Hidden Semi-
Markov Model for the system.

To track the state of a mobile user, we apply the forward-backward and
re-estimation algorithms for HSMM parameter estimation discussed in
[71[10]. The main steps of the tracking algorithm are summarized as follows:

1. Apply the HSMM re-estimation algorithm to obtain initial estimates ( AO ,

éo, FA’0 ) 3r0) of the HSMM model parameters by using training data.

2. Apply the HSMM forward-backward estimation algorithm to estimate the
state s; of the mobile user at time t, based on the geolocation observation
sequences 0.

3. Obtain refined estimates, (Ai ) éi, P ' 3ri ), by applying the HSMM re-

I

estimation algorithm to the given observation sequences.

Estimation of the mobility model parameters must in general be made
based on missing data. Due to physical constraints, geolocation measurement
and/or transmission of geolocation data may not take place frequently
enough to allow precise tracking of the user's state at all times. We consider
four different cases [11]:

1. Deterministic observation pattern: The geolocation observations are
generated periodically but some mobile states may be missing if the
observations are not made frequently enough.

2. Random observation pattern: The geolocation observation are generated
at random times. Again, some mobile states may be missing due to
insufficient observation frequency.

3. State-dependent missing observation: In some states, there may be a finite
probability that a null output is generated. For example, in a certain state,
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a mobile user may not request any Web content. In this case, the system

is not able to log any requests from the user.

4. Output-dependent missing observation. Even when a non-null output is
generated by a given state, the corresponding observation could still be
missing, e.g., if the signal received by a base station is too weak or is
corrupted noise, or if the state duration is too short.

A detailed development of the main elements of the HSMM parameter
estimation algorithm and its validation by simulation are reported in [7][11].
The algorithm has a computational complexity proportional to D, where D is
the maximum value of the dwell time for all states. The more general
forward-backward algorithm reduces to the Baum-Welch algorithm when
D=1. We note that the algorithm offers a significant improvement over an
earlier algorithm by Ferguson (1980) [10] which has computational
complexity proportional to D.

We define one of the forward variables [10] [7] as follows:

o; (m) = Pr[oy' ; state m begins at t+1] / Pr[0,1], (10)

where 0,' is the sequence of observations from time 1 to time t, and ¢ (m) is
the probability that a mobile user is entering its next state m at time t+1 for
given observations o,". The forward variables are then computed inductively
fort=1, 2, ..., T [7][10]. Similarly, the backward variables can be defined
and computed inductively for t = T, T-1, ..., 1. After computing the forward
and backward variables, the maximum a posterior (MAP) state estimate can
be found.

A simple iterative procedure for re-estimating the HSMM parameters is
reported in [7]. By applying the well-known EM (Expectation /
Maximization) algorithm, it can be shown that this iterative procedure is
increasing in likelihood. The overall computational complexity of the re-
estimation algorithm is essentially proportional to T. Thus, the parameters for
the HSMM model can be estimated efficiently within the framework of
dynamic mobility model tracking.

4. CHARACTERIZATION OF TRAFFIC

We can augment the above mobility model by introducing state-
dependent information. Let {0, 1, ..., J} represent a set of user requirements
for web content, where content type j=0 specially represents no requirement,
as shown in Figure 1. We suppose that a mobile user entering state m
requires web content of type j from the network with probability cy(j), with:
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icm(j):l, m=1, ..., M. (11)
j=0

0 No Request
A mobile user ¢ (j)=Pr[j | state m] G
stays in state m >

for interval d

> I Request for content 1
Requirement Probability - K_“ q

Request for' content j

Request for content J
Figure 1. Request model.

The mobile users' requests are logged in a wireless Internet Web server,
forming an observation sequence that can be obtained independently from
the geolocation observation sequence. As mentioned in Section 3, based on
the geolocation observations, the distribution {b.,(k)} defined in (9) can be
determined by the model parameter re-estimation algorithms for HSMM.
Similarly, the probability distribution {cn(j)} can be treated as a model
parameter and be determined using the parameter re-estimation algorithms
based on the observations of requests.

Traffic characterization is a necessary step in determining the amount of
system resource that should be allocated for each user in order to meet their
quality-of-service (QoS) requirements. The wireless Internet Web servers
should allocate sufficient computational resources to process user requests.
The network should also allocate sufficient bandwidth and buffer resources
to provide QoS for transmissions from the mobile user. Using the mean
departure rate A, given in (6), the average request rate for content j can be
determined by [8]:

S 5 X Ca () :

Ry => 4,6, (J) =D "N, =1, ..., J. (12)
m=1 m=1 dm

The instantaneous request rate for content j can be defined by

Rj(t):icr&—(j)Nm(t), =1, . (13)

m

If the dwell time distributions of the user states are assumed exponential,
then N(t) is a Markov process. Hence, the request rate process Rj(t) defined
here can be viewed as a Markov modulated rate process (MMRP) as studied
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in [12]. If we allow the dwell times to have general distributions, R;(t)
becomes what we may term as a semi-Markov modulated rate process. Let
X(t) be an M-dimensional diffusion process that approximates the M-
dimensional semi-Markov process N(t). Under a set of reasonable
assumptions [12], X(t) can be expressed as an M-dimensional Ornstein-
Uhlenbeck (O-U) process. Hence, the process R;j(t) can be approximated by a
Gaussian process

ﬁj(t)zicf&—(j)xm(t), i=1, ..., J. (14)

m

5. WEB PREFETCHING

Proxy Web servers have been introduced to the Internet in order to
prefetch or cache frequently requested web content, thus improving the web
access speed perceived by the end user [13]. Fast access to the Internet is
especially important in the wireless environment, where the bandwidth and
other system resources are expensive commodities. Under conventional
prefetching schemes, the hit ratio is typically less than 50%, even when the
storage capacity of the proxy server is relatively large [13]. This implies that
more than half of the web content requested by a typical user must be
obtained directly from the origin servers. Consequently, under conventional
prefetching schemes, users may still experience relatively large average
latencies and highly variable delays in accessing web content. In the wireless
network, this results in a considerable waste of the wireless resources.

In [5], a static prefetch scheme for wireless Internet services based on the
statistical data collected from user requests and server responses is proposed.
In the following, we apply the integrated mobility/traffic tracking model to
develop a predictive prefetch scheme for each mobile user based on the
estimation of the user's mobility and the web access probabilities. Our
objective is to improve the access latency performance over conventional
prefetching schemes.

The information obtained from the mobility tracking and the request
model is used to estimate the access probability that a mobile user requests a
Web document. By using a forward-backward algorithm, we can obtain the
probabilities that the mobile user enters its next state, {¢; (m) : me S}, given
in (10). Therefore, the access probability that the mobile user requests
content j at time t is given by

yi(t)=> o (m)c, (j). (15)

meS
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Conventional prefetching schemes are based on the access probability of
a web document. Therefore, this probability can be used straightforwardly to
design a prefetch scheme. We use the prefetch criterion proposed in [14] to
reduce the average access latency. Define

7; (©) =50 (L-hy) 4T;. (16)

where h; is the average hit ratio for the requests for content j, and AT; is the
average response delay for content j imposed by the Internet:

AT; = E{response_time; - request_time;}. a7

where request_time; is the time when the proxy server sends out the request
for content j, and response_time; is the time when the proxy server receives
the response for content j. If the proxy server cache can store up to r
documents, then the r documents of highest value 7 (t) are prefetched [14].

6. SIMULATION RESULTS

We consider an example scenario of a serving area (about 1 km by 1 km)
consisting of 128 street segments in a rectangular mesh layout. Each street
segment is about 100 meters long. We assume that for each street segment,
there are two walking states (in two directions), two driving states (in two
directions) and one shopping state. There are a total of 640 active states plus
one inactive source state and one absorbing state. Each active state has about
ten neighbor states. Transitions can occur from the inactive source state to
any active state and from any active state to the absorbing state. The mean
dwell time for a walking state is about 3 minutes, while that for a driving
state is 16 seconds and that for a shopping state is 12 minutes. There are 50
mobile users involved in the wireless Internet services. There are 20
categories associated with each street segment and each category has 20
distinct web contents. Therefore, there are a total of 51,200 contents for the
serving area. We assume that the average response time delay imposed by the
Internet is AT = 500 ms.

We denote I, as the real location (i.e., street segment) of a mobile user
when it is in state m. Then we assume that the access probability in state m
for contents associated with location I is inversely proportional to the square
of the distance between | and I, i.e.,

Cn(l) o< V() for Izl (18)

Specifically, we let
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Cn(Im)=0.9and Y_c, () =1- cn(ln)=0.1 (19)

1,

when m corresponds to a shopping state. In other words, when the mobile
user is in a shopping state m, it requests, with probability 0.9, the contents
that are associated with the location I,. In a similar way, we assign
Cm(Im)=0.8 and ¢y (l,)=0.6 when m corresponds, respectively, to the walking
and driving states. When the user is in a given state m, it accesses the content
from the associated categories according to a uniform distribution. We also
assume that the distribution of content access probabilities for a given state,
location and category follows a Zipf's law-like distribution [15][16], where
the probability of requests for the ith most popular content is proportional to
1/i% with o=1.

The simulation results for the prefetch scheme are shown in Figure 2.
From this figure, we see that if the proxy server prefetches five documents
for each mobile user, the average latency can be reduced by about 54 ms for
each access request to the Internet. If the proxy server prefetches 100
documents for each mobile user, the average latency can be reduced by about
156 ms. Note that prefetching a selected document means that whenever
there is no fresh copy of the document in the cache, the proxy server fetches
the document from the origin server.
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Figure 2. Reduction in average latency using the proposed prefetch scheme.

7. CONCLUSION

In this paper, we constructed a model to characterize mobile user
behavior in a general state-space using a semi-Markov process
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representation. We discussed how to build a user request model to
characterize traffic patterns generated by web document requests. Based on
the mobility tracking and request model, we proposed a prefetch scheme for
each individual mobile user to reduce the average access latency incurred
when a mobile user accesses wireless Internet Web content. Besides an
improvement in the perceived QoS of the user, the reduction in access
latency implies a significant savings in wireless resources. The simulation
results for a representative scenario showed reductions ranging from 10% to
30%, depending on the number of documents prefetched for each user.
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